1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
use std::ops::Range;
use std::str::FromStr;
use std::sync::Arc;
use std::vec;
use crate::{
common::BlockDatabase,
compile::{Builder, Flags, Pattern},
runtime::Matching,
Error, Result,
};
/// Match represents a single match of a regex in a haystack.
///
/// The lifetime parameter `'t` refers to the lifetime of the matched text.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub struct Match<'t> {
text: &'t str,
start: usize,
end: usize,
}
impl<'t> Match<'t> {
/// Returns the starting byte offset of the match in the haystack.
#[inline]
pub fn start(&self) -> usize {
self.start
}
/// Returns the ending byte offset of the match in the haystack.
#[inline]
pub fn end(&self) -> usize {
self.end
}
/// Returns the range over the starting and ending byte offsets of the
/// match in the haystack.
#[inline]
pub fn range(&self) -> Range<usize> {
self.start..self.end
}
/// Returns the matched text.
#[inline]
pub fn as_str(&self) -> &'t str {
&self.text[self.start..self.end]
}
/// Creates a new match from the given haystack and byte offsets.
#[inline]
fn new(haystack: &'t str, start: usize, end: usize) -> Match<'t> {
Match {
text: haystack,
start,
end,
}
}
}
impl<'t> From<Match<'t>> for &'t str {
fn from(m: Match<'t>) -> &'t str {
m.as_str()
}
}
impl<'t> From<Match<'t>> for Range<usize> {
fn from(m: Match<'t>) -> Range<usize> {
m.range()
}
}
/// An iterator over all non-overlapping matches for a particular string.
///
/// The iterator yields a `Match` value. The iterator stops when no more
/// matches can be found.
///
/// `'r` is the lifetime of the compiled regular expression and `'t` is the
/// lifetime of the matched string.
pub struct Matches<'t>(&'t str, vec::IntoIter<Range<usize>>);
impl<'t> Matches<'t> {
/// Return the text being searched.
pub fn text(&self) -> &'t str {
self.0
}
}
impl<'t> Iterator for Matches<'t> {
type Item = Match<'t>;
fn next(&mut self) -> Option<Self::Item> {
self.1.next().map(|range| Match::new(self.0, range.start, range.end))
}
}
impl<'t> DoubleEndedIterator for Matches<'t> {
fn next_back(&mut self) -> Option<Self::Item> {
self.1
.next_back()
.map(|range| Match::new(self.0, range.start, range.end))
}
}
/// A compiled regular expression for matching Unicode strings.
#[derive(Clone)]
pub struct Regex(pub(crate) Arc<BlockDatabase>);
impl FromStr for Regex {
type Err = Error;
/// Attempts to parse a string into a regular expression
fn from_str(s: &str) -> Result<Regex> {
Regex::new(s)
}
}
/// Core regular expression methods.
impl Regex {
/// Compiles a regular expression.
/// Once compiled, it can be used repeatedly to search, split or replace text in a string.
///
/// If an invalid expression is given, then an error is returned.
pub fn new<S: Into<String>>(re: S) -> Result<Regex> {
Self::with_flags(re, Flags::empty())
}
pub(crate) fn with_flags<S: Into<String>>(re: S, flags: Flags) -> Result<Regex> {
Pattern::with_flags(re, flags | Flags::SOM_LEFTMOST | Flags::UTF8)?
.build()
.map(|db| Regex(Arc::new(db)))
}
/// Returns true if and only if the regex matches the string given.
///
/// It is recommended to use this method if all you need to do is test a match,
/// since the underlying matching engine may be able to do less work.
///
/// # Examples
///
/// Test if some text contains at least one word with exactly 13 Unicode word characters:
///
/// ```rust
/// # use hyperscan::regex::Regex;
/// let text = "I categorically deny having triskaidekaphobia.";
/// assert!(Regex::new(r"\b\w{13}\b").unwrap().is_match(text));
/// ```
pub fn is_match(&self, text: &str) -> bool {
let mut matched = false;
let s = self.0.alloc_scratch().unwrap();
let _ = self.0.scan(text, &s, |_, _, _, _| {
matched = true;
Matching::Terminate
});
matched
}
/// Returns the start and end byte range of the leftmost-first match in text. If no match exists, then None is returned.
///
/// Note that this should only be used if you want to discover the position of the match. Testing the existence of a match is faster if you use is_match.
///
/// # Examples
///
/// Find the start and end location of the first word with exactly 13 Unicode word characters:
///
/// ```rust
/// # use hyperscan::regex::Regex;
/// let text = "I categorically deny having triskaidekaphobia.";
/// let mat = Regex::new(r"\b\w{13}\b").unwrap().find(text).unwrap();
/// assert_eq!(mat.start(), 2);
/// assert_eq!(mat.end(), 15);
/// ```
pub fn find<'t>(&self, text: &'t str) -> Option<Match<'t>> {
let mut matched = vec![];
let s = self.0.alloc_scratch().unwrap();
let _ = self.0.scan(text, &s, |_, from, to, _| {
matched.push((from as usize, to as usize));
Matching::Terminate
});
matched
.first()
.map(|&(start, end)| Match::new(&text[start..end], start, end))
}
/// Returns an iterator for each successive non-overlapping match in
/// `text`, returning the start and end byte indices with respect to
/// `text`.
///
/// # Examples
///
/// Find the start and end location of every word with exactly 13 Unicode
/// word characters:
///
/// ```rust
/// # use hyperscan::regex::Regex;
/// let text = "Retroactively relinquishing remunerations is reprehensible.";
/// for mat in Regex::new(r"\b\w{13}\b").unwrap().find_iter(text) {
/// println!("{:?}", mat);
/// }
/// ```
pub fn find_iter<'t>(&self, text: &'t str) -> Matches<'t> {
let mut matched = Vec::<Range<usize>>::new();
let s = self.0.alloc_scratch().unwrap();
let _ = self.0.scan(text, &s, |_, from, to, _| {
let range = from as usize..to as usize;
match matched.last() {
Some(last) if last.start == range.start && last.end < range.end => {
// only the non-overlapping match should be return
*matched.last_mut().unwrap() = range;
}
_ => matched.push(range),
}
Matching::Continue
});
Matches(text, matched.into_iter())
}
/// Returns an iterator of substrings of `text` delimited by a match of the
/// regular expression. Namely, each element of the iterator corresponds to
/// text that *isn't* matched by the regular expression.
///
/// This method will *not* copy the text given.
///
/// # Examples
///
/// To split a string delimited by arbitrary amounts of spaces or tabs:
///
/// ```rust
/// # use hyperscan::regex::Regex;
/// let re = Regex::new(r"[ \t]+").unwrap();
/// let fields: Vec<&str> = re.split("a b \t c\td e").collect();
/// assert_eq!(fields, vec!["a", "b", "c", "d", "e"]);
/// ```
pub fn split<'t>(&self, text: &'t str) -> Split<'t> {
Split {
finder: self.find_iter(text),
last: 0,
}
}
/// Returns an iterator of at most `limit` substrings of `text` delimited
/// by a match of the regular expression. (A `limit` of `0` will return no
/// substrings.) Namely, each element of the iterator corresponds to text
/// that *isn't* matched by the regular expression. The remainder of the
/// string that is not split will be the last element in the iterator.
///
/// This method will *not* copy the text given.
///
/// # Examples
///
/// Get the first two words in some text:
///
/// ```rust
/// # use hyperscan::regex::Regex;
/// let re = Regex::new(r"\W+").unwrap();
/// let fields: Vec<&str> = re.splitn("Hey! How are you?", 3).collect();
/// assert_eq!(fields, vec!("Hey", "How", "are you?"));
/// ```
pub fn splitn<'t>(&self, text: &'t str, limit: usize) -> SplitN<'t> {
SplitN {
splits: self.split(text),
n: limit,
}
}
}
/// Yields all substrings delimited by a regular expression match.
///
/// `'t` is the lifetime of the string being split.
pub struct Split<'t> {
finder: Matches<'t>,
last: usize,
}
impl<'t> Iterator for Split<'t> {
type Item = &'t str;
fn next(&mut self) -> Option<&'t str> {
let text = self.finder.text();
match self.finder.next() {
None => {
if self.last > text.len() {
None
} else {
let s = &text[self.last..];
self.last = text.len() + 1; // Next call will return None
Some(s)
}
}
Some(m) => {
let matched = &text[self.last..m.start()];
self.last = m.end();
Some(matched)
}
}
}
}
/// Yields at most `N` substrings delimited by a regular expression match.
///
/// The last substring will be whatever remains after splitting.
///
/// `'t` is the lifetime of the string being split.
pub struct SplitN<'t> {
splits: Split<'t>,
n: usize,
}
impl<'t> Iterator for SplitN<'t> {
type Item = &'t str;
fn next(&mut self) -> Option<&'t str> {
if self.n == 0 {
return None;
}
self.n -= 1;
if self.n > 0 {
return self.splits.next();
}
let text = self.splits.finder.text();
if self.splits.last > text.len() {
// We've already returned all substrings.
None
} else {
// self.n == 0, so future calls will return None immediately
Some(&text[self.splits.last..])
}
}
}
#[cfg(test)]
mod tests {
#[test]
fn test_find_iter() {
let regex = r"\b\w{13}\b";
let text = "Retroactively relinquishing remunerations is reprehensible.";
assert_eq!(
regex::Regex::new(regex)
.unwrap()
.find_iter(text)
.map(|m| m.range())
.collect::<Vec<_>>(),
super::Regex::new(regex)
.unwrap()
.find_iter(text)
.map(|m| m.range())
.collect::<Vec<_>>()
);
}
}